BEIJING - FANUC 溫度補償功能應用 NO.文件信息文檔名稱類別發(fā)布日期溫度補償功能應用經驗類文檔2013 年 8 月 15 日發(fā)布范圍北京發(fā)那科機電有限公司全體營銷業(yè)務線√北京發(fā)那科機電有限公司技術部機床廠最終用戶關鍵詞:溫度檢測模塊、外部機械原點偏移改版記錄:版本改版內容修訂人日期1.0新發(fā)布朱成龍文件審批記錄:編寫人業(yè)務審核批準人報送朱成龍目錄溫度補償功能應用............................................................. 31、概述........................................................................32、 溫度補償過程...............................................................3 2.1 數學模型建立..........................................................3 2.2 補償數據采樣 ..........................................................5 2.2.1 傳感器安裝 ......................................................52.2.2 數據采樣.........................................................53、 溫度補償方案...............................................................53.1 硬件配置...............................................................63.1.1 選型.............................................................63.1.2 接線.............................................................73.1.3 PMC 接口.........................................................9 3.1.3.1 輸入信號(溫度輸入模塊→PMC)............................93.1.3.2 輸出信號(PMC→溫度輸入模塊) ..........................103.1.4 控制方式........................................................113.2 軟件功能設計..........................................................123.2.1 選型............................................................133.2.2 參數設定........................................................13附件: PMC 程序 ..............................................................13溫度補償功能應用1、概述 金屬材料具有“熱脹冷縮”的性質,該特性在物理學上通常用熱膨脹系數( Thermal expansion coefficient,α therm )描述。精工機床的床身、立柱、托板等導軌基礎件和滾珠絲杠等傳動部件一般由金屬材料制成,由于機床驅動電機的發(fā)熱、運動部件摩擦發(fā)熱以及環(huán)境溫度等的變化,均會對機床運動軸位置產生附加誤差,這將直接影響機床的定位精度,從而影響工件的加工精度。對于在普通車間環(huán)境條件下使用的精工機床尤其是行程較長的機床熱膨脹系數的影響更不容忽視。以行程5m的軸來說,金屬材料的熱膨脹系數為10ppm(10um/每1m每1℃),理論上溫度每升高1℃,5m行程的軸就“脹長”50um。因此高精度機床和長行程機床需使用“溫度補償”功能來消除附加誤差。2、溫度補償過程 2.1 數學模型建立機床坐標軸的定位誤差隨溫度變化會附加一定偏差,對每一給定溫度可測出相應的定位誤差曲線,為了完成溫度補償需要測出不同溫度下的定位誤差曲線。如圖1為一組實驗曲線,測量條件是:以23度誤差曲線為基準,在行程500mm~1500mm范圍內不停的運動加熱機床,每隔20min做一次定位誤差測量采樣,采樣間距100mm,并用點溫計記錄滾珠絲杠的溫度。因此一定溫度T的定位誤差曲線可以表示為如圖2所示的直線,其數學表達式為: (公式 1)其中: 為軸實際位置的定位誤差溫度偏差補償值 是與軸位置不相關的溫度偏差補償值 為軸的實際位置 為軸的參考點位置 為與軸位置相關的溫度補償系數(定位誤差曲線的梯度)圖1:不同溫度范圍時Z軸定位誤差曲線圖 2:溫度 T 時 X 軸定位誤差曲線根據圖2繪制溫度系數曲線圖如圖3所示,該曲線反映了某一溫度下,******補償位置對應的******誤差,用擬合直線逼近該曲線以后,利用公式1計算: (公式 2)其中:為位置相關點誤差等于0所對應的溫度;為******的測量溫度為在情況下的溫度系數,該溫度系數表示在某一溫度下,滾珠絲杠每 1000mm 所對應的******誤差。圖 3:溫度系數曲線圖以機床參考點作為零基準測量位移(P0 =0),忽略參考點處溫度影響(Δ K x (T ) =0),則由公式1和公式2得以下關系: (公式 3) 根據公式 3,只需采樣絲杠******溫度T max 、 T max 情況下溫度系數TK max 、參考溫度T0 、當前絲杠溫度 T 及當前軸位置 P x ,即可計算出當前情況下的位置偏移,將此值作為補償值對機械原點進行偏移后即可保證機床的定位精度。2.2 補償數據采樣 2.2.1 傳感器安裝 為準確采樣絲杠溫度,將溫度傳感器安裝在靠近電機與絲杠連接處的絲杠最末端,傳感器可采用 PT100。 PT100 是鉑電阻溫度傳感器,適用于測量-60 度~+400 度之間的溫度,完全適用于機床的使用環(huán)境溫度 5 度~45 度。 PT100 在 0 度時的電阻為 100 歐,在 100 度時的電阻溫度約為 138.5 歐,隨著溫度的變化電阻成線性變化,大約為每攝氏度 0.4 歐。圖 4:PT100 鉑電阻 RT 曲線圖標2.2.2數據采樣 機床開機熱機30min,測量此時傳感器溫度T0 為參考溫度; 來回運行測量軸,每20min測量此時的絲杠溫度T和該溫度下的溫度系數(絲杠伸長量); 待絲杠溫度T測量值基本保持不變時記錄當前絲杠溫度為絲杠******溫度T max ,此溫度下溫度系數TK max 。3、 溫度補償方案 FANUC 在實現溫度補償功能時可采用溫度輸入模塊+外部機械原點偏移功能來實現,具體應用方案如下: 3.1 硬件配置 3.1.1 選型 FANUC 輸入輸出模塊I/O Moudle A中包含溫度輸入模塊( Temperature Input Moudle)可進行溫度模擬量的輸入,溫度補償模塊相關硬件訂貨號如下: I/O LINK i 連接方式:表 1: FANUC I/O Moudle A 溫度輸入模塊 I/O LINK i 連接方式下配件訂貨號模塊名稱訂貨號含義基本單元 ABU05AA03B-0826-J002橫置,可連接 5 個輸入輸出單元(其他基本單元請查看訂貨清單)接口單元 AIF01DA03B-0826-J015標準基本單元,不可擴展(其他接口單元請查看訂貨清單)溫度輸入模塊 ATI04AA03B-0826-J056Pt/JPt 熱電阻輸入模塊溫度輸入模塊 ATI04BA03B-0826-J057J/K 熱電偶輸入模塊端子單元 ATB01AA03B-0826-J350Pt/JPt 熱電阻端子單元端子單元 ATB01BA03B-0826-J351J/K 熱電偶端子單元I/O LINK 連接方式:表 2: FANUC I/O Moudle A 溫度輸入模塊 I/O LINK 連接方式下配件訂貨號模塊名稱訂貨號含義基本單元 ABU05AA03B-0819-J002橫置,可連接 5 個輸入輸出單元(其他基本單元請查看訂貨清單)接口單元 AIF01AA03B-0819-J011標準基本單元,不可擴展(其他接口單元請查看訂貨清單)溫度輸入模塊 ATI04AA03B-0819-J056Pt/JPt 熱電阻輸入模塊溫度輸入模塊 ATI04BA03B-0819-J057J/K 熱電偶輸入模塊端子單元 ATB01AA03B-0819-J350Pt/JPt 熱電阻端子單元端子單元 ATB01BA03B-0819-J351J/K 熱電偶端子單元 線纜( FOR I/O LINK&I/O LINK i):表 3: FANUC I/O Moudle A 溫度輸入模塊線纜訂貨號模塊名稱訂貨號含義I/O 與接口單元連接線纜 K1XA03B-0807-K801A03B-0807-K802K801(5m)K802(10m)溫度輸入模塊與端子單元連接線纜 K5XA03B-0807-K808A03B-0807-K809A03B-0807-K810K808(5m)K809(7m)K810(10m)其中溫度輸入模塊分為 ATI04A 和 ATI04B 兩種,主要區(qū)別如下:表 4: FANUC 溫度輸入模塊 ATI04A 和 ATI04B 規(guī)格對照模塊傳感器類型溫度輸入范圍分辨率精度ATI04APT100/JPT100 熱電阻-50~300.0℃ 0.1℃±1%ATI04BJ/K 熱電偶0~600.0℃0.1℃±1%3.1.2 接線溫度輸入模塊總體接線圖和端子單元接線圖如下:圖 5:溫度輸入模塊總體接線圖圖 6:熱電阻型接線圖 7:熱電偶型接線圖 8:溫度輸入模塊管腳定義ATI04A 熱電阻型ATI04B 熱電偶型圖 9:端子單元接線區(qū)別左:熱電阻型端子單元 ATB01A右:熱電偶型端子單元 ATB01B3.1.3 PMC 接口 溫度輸入模塊與 PMC 的接口占用 4 字節(jié)輸入和 4 字節(jié)輸出,具體輸入輸出地址含義如下: 3.1.3.1 輸入信號(溫度輸入模塊→PMC)表 5: FANUC 溫度輸入模塊輸入信號地址分配及含義0DI 07~DI 00CH1 和 CH3 溫度輸入值,或者 CH1 和 CH3 異常信息(低 8 位)+1DI 12~DI 08CH1 和 CH3 溫度輸入值,或者 CH1 和 CH3 異常信息(高 5 位)DI 15~DI 13狀態(tài)信號+2DI 23~DI 16CH2 和 CH4 溫度輸入值,或者 CH2 和 CH4 異常信息(低 8 位)+3DI 28~DI 24CH2 和 CH4 溫度輸入值,或者 CH2 和 CH4 異常信息(高 5 位)DI 31~DI 29狀態(tài)信號· CH1 和 CH3 通道溫度數據讀入DI07DI06DI05DI04DI03DI02DI01DI00DI15DI14DI13DI12DI11DI10DI09DI08DI00~DI12 CH1和CH3溫度輸入值或者異常信息詳細DI13 異常標志位1:溫度讀取異常,異常信息保存在DI00~DI12中 0: DI00~DI12存儲數值為溫度輸入值DI14 CH1數據讀取準備好信號,當這一位為1時可讀取 CH1 的DI00~DI12溫度數據DI15 CH3數據讀取準備好信號,當這一位為1時可讀取CH3的DI00~DI12溫度數據 · CH2 和 CH4 通道溫度數據讀入DI23DI22DI21DI20DI19DI18DI17DI16DI31DI30DI29DI28DI27DI26DI25DI24DI16~DI28 CH2和CH4溫度輸入值或者異常信息詳細DI29 異常標志位 1:溫度讀取異常,異常信息保存在DI16~DI28中 0:DI16~DI28存儲數值為溫度輸入值DI30 CH2數據讀取準備好信號,當這一位為1時可讀取CH2的DI16~DI28溫度數據DI31 CH4數據讀取準備好信號,當這一位為1時可讀取CH4的DI16~DI28溫度數據 溫度輸入數據是以16進制代碼表示, 數據值為實際溫度的10倍,另外如果使用 AT104A 熱電阻型溫度輸入模塊DI12和DI28表示溫度值的正負,使用ATI04B熱電偶型溫度輸入模塊時溫度輸入值始終為正值,DI12和DI28無正負含義。例: 使用 ATI04A 接口單元,讀取溫度數據 5FFBh 5FFB=101 1111 1111 1011,前三位為標志位,第四位為溫度正負, 則實際溫度為-[NOT(1111111011)+1]/10=-0.5℃ 3.1.3.2 輸出信號(PMC→溫度輸入模塊)表 6: FANUC 溫度輸入模塊輸出信號地址分配及含義0DO07~DO004 通道自動控制方式通道切換時間(低 8 位)+1DO15~DO084 通道自動控制方式通道切換時間(低 8 位)+2DO23~DO16模塊設定數據和定時數據+3DO31~DO24模塊設定數據和定時數據DO00~DO15 4 通道自動控制方式通道切換時間注: 2 通道方式不需設定,通常時間設定范圍為 0.5s 到 10s,設定時以實際時間 10 倍的 16 進制數值進行設定。DO17 溫度輸入模塊類型 0: ATI04B 熱電偶型 1: ATI04A 熱電阻型DO18 傳感器類型 ATI04A 0: PT 1: JPT ATI04B 0: K 1: JDO19 備用,請設置 0DO24 通道數 0: 2 通道 1: 4 通道(此時必須設定 DO25)DO25 4 通道模式指定 0:自動方式 1:手動方式(通過 DO22 讀取請求信號和 DO26 通道選擇信號手動指定)DO16 系統(tǒng)準備好信號DO22 讀取請求信號DO26 通道選擇信號 0: CH1 和 CH2 1: CH3 和 CH4圖 10: 4 通道手動模式溫度讀取時序要求注:溫度讀取請求信號與系統(tǒng)準備好信號之間需要有1s以上的間隔時間。 3.1.4 控制方式 溫度輸入模塊控制方式有以下3種: ·2通道控制方式(通道CH1和CH2數據每0.3s更新) ·4通道自動方式(通道CH1和CH2與CH3和CH4數據讀取自動切換,每通道數據更新時間由PMC設定,設定范圍0.5s到10s) ·4通道手動方式(通過讀取請求信號指定) 以 4 通道自動方式舉例,溫度讀取控制流程圖如下:開始圖 11: 4 通道自動方式控制流程圖3.2 軟件功能設計 FANUC 機械原點偏移功能可以輸入偏移量而使機械原點偏移。輸入偏移量時立即向對應的軸應用補償使機械運動。偏移軸的偏移量以檢測單位為單位,在信號ED0~ED15中以 0~+/-9999范圍內的2進制代碼予以指定。該補償量始終是一個絕對值,輸入時機械實際移動的量是與上一次的差分。 而通常的外部機械原點偏移無法使多個軸同時偏移,使用擴展的外部機械原點偏移功能時,可以同時進行相當于控制軸數量的外部機械原點偏移。外部機械原點偏移量在由參數確定的R區(qū)域中進行設定。偏移量采用二進制代碼,設定范圍-32767~32767的絕對值指令。 3.2.1 選型表 7: FANUC 溫度輸入模塊使用軟件功能說明功能名稱訂貨號備注外部數據輸入A02B-0327-J913 ( 31i-B)0i-D 標配包含外部刀具補償、外部信息、外部機械原點偏移外部機械原點偏移A02B-0327-J912 ( 31i-B)0i-D 標配包含外部機械原點偏移和擴展的外部機械原點偏移注:外部機械原點偏移和擴展的外部機械原點偏移均在建立原點后生效,且與螺距誤差補償、直線度補償等誤差補償功能疊加輸出。 3.2.2 參數設定 參數 1203#0EMS 設定為 1, 外部機械原點偏移功能生效, 參數 1280 設定 PMC 中 R 區(qū)域地址,例:參數 1280 中設定 100 時表 8:機械原點偏移量分配說明R0100第1軸的外部機械原點偏移量(LOW)R0101第1軸的外部機械原點偏移量(HIGH)R0102第2軸的外部機械原點偏移量(LOW)R0103第2軸的外部機械原點偏移量(HIGH)…………R(0100+2(N-1))第n軸的外部機械原點偏移量(LOW)R(0100+2(N-1)+1)第n軸的外部機械原點偏移量(HIGH)偏移量理論計算值: 每一個軸以2字節(jié)的二進制代碼來給出偏移量,設定范圍-32767~32767,偏移量視為由絕對值指令的值,單位為檢測單位。例:設定單位 IS-B,公制機械系統(tǒng)(參數 INM(NO.1001#0)=0) 檢測單位0.0002mm(CMR(參數( NO.1820))=10)將參數 NO.1280設定為100時,寫入R102=1100 1100(CCh)、R103=1110 1101(EDh)時,第 2 軸的機械位置偏移量為 EDCCh(脈沖)*0.0002(mm/脈沖)=-0.932mm 在常州創(chuàng)勝特爾 BC 混合型五軸聯動加工中心上測試,理論設定偏移量1絲,實際偏移量7u,補償效果良好。附件: PMC 程序 以溫度輸入模塊 ATI04A 使用Pt100熱電阻測量機床第一軸和第二軸溫度為例,采用2 通道控制方式,模塊地址分配X0~X3、Y0~Y3;外部機械原點偏移量起始地址R100(參數1280=100);輸入地址表:X0.0~X0.7(DI00~DI07)X1.7(DI15)X1.6(DI14)X1.5(DI13)X1.0~X1.4(DI08~DI12)X2.0~X2.7(DI16~DI23)X3.7(DI31)X3.6(DI30)X3.5(DI29)X3.0~X3.4(DI24~DI28輸出地址表:Y0.0~Y0.7(DO00~DO07)Y1.0~Y1.7(DO08~DO15)Y2.7(DO23)Y2.6(DO22)Y2.5(DO21)Y2.4(DO20)Y2.3(DO19)Y2.2(DO18)Y2.1(DO17)Y2.0(DO16)Y3.7(DO31)Y3.6(DO30)Y3.5(DO29)Y3.4(DO28)Y3.3(DO27)Y3.2(DO26)Y3.1(DO25)Y3.0(DO24)溫度補償流程:PMC 編寫:
主站蜘蛛池模板:
巴中市|
屏边|
昭觉县|
巍山|
张家口市|
巴东县|
靖安县|
县级市|
左贡县|
开鲁县|
永泰县|
新乡市|
北川|
崇明县|
广丰县|
醴陵市|
惠东县|
开封县|
龙南县|
平阴县|
资源县|
山东省|
正定县|
安塞县|
晋宁县|
四川省|
水富县|
云阳县|
公安县|
镇赉县|
惠州市|
石河子市|
华亭县|
昌邑市|
黄平县|
上饶县|
叙永县|
平山县|
青田县|
苗栗县|
龙井市|